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ABSTRACT

2 9
The detailed equations of motion for a spacecraft

separating from a final rocket stage or another spacecraft

by means of separation springs have been derived and

programmed for solution on the IBM 7090 digital computer.

This report shows how the equations were derived,

which parameters are significant, and how the program

can be used to compute tipoff errors for actual spring

separation system design. _/_ _

This work was performed under Contract No. NAS5-

899 for Goddard Space Flight Center, National Aeronautics

and Space Administration, Greenbelt, Maryland.
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I. INTRODUCTION

For the OGO and 823 programs, the Dynamics L_epartment of STL

has studied in detail the problem of separating spacecraft from their final

booster stage and from each other by the use of precision helical com-

pression springs. Analyses have been performed to verify that these

separation springs provide an adequate relative velocity between the two

bodies, but do not introduce excessive tipoff angles and angular rates.

The basic equations of motion used for these studies have been pro-

grammed for the IBM 7090 digita! computer. The use of this program has

greatly reduced the computation time required to look at the importance

of each of the many parameters which bear on the problem.

Gross dynamic effects of a two-body separation can be easily found

by "hand" solutions of relatively simple impulse-momentum equations.

Solutions such as this have proved quite adequate for determining pre-

liminary estimates of required separation spring stroke length, spring

rates, etc. When the precise motion that may be imparted to the space-

craft by this type of separation needs to be known, however, a more de-

tailed solution is required.

This report outlines such a solution. It has been simplified, how-

ever, since the typical spring separation of a spacecraft from a final

rocket stage produces tipoff angles which are usually much less than

1 _e and tipoff rates on the order of 1 to Z C_/sec. Since these are

very small, assumptions can be made which greatly decrease the com-

plexity of the equations of motion.

Solution by digital computer makes it possible to study variations

in the large number of weight and dimensional parameters produced by

manufacturing and as sembly tolerance s.
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2. DYNAMIC MODEL AND COORDINATE SYSTEMS

The basic model of the spacecraft separation p.roblem consists of

two rigid bodies, clamped together before separation is initiated, forced

apart by up to four separation springs, and, finally, completely separated.

All motion of both bodies is limited to a single plane. Each body trans-

lates along two axes and rotates in this plane. The mass and inertia prop-

erties of each body are considered to be time invariant.

Essentially two dynamic models have been Used. The first, shown

in Figure I, represents the geometry to be used in obtaining the initial

mated-body accelerations, due to residual thrust of the final rocket stage,

which set many of the initial conditions of the problem.

The dynamic model shown in Figure 2 is used to define the coordi-

nate system of each body from the "equilibrium" position. The bodies are

in the "equilibrium" position when the total axial and lateral separation

spring forces cancel out the respective inertia forces in the initial accel-

eration field. The equations of motion of each body have been written

using these coordinates.

3. INITIAL MATED-BODY CONDITIONS

Besides any arbitrary initial conditions on the two bodies there will

be conditions at t = 0 (when the springs are released) imposed by residual

thrust in the final rocket stage. These conditions are determined by use

of the model as shown in Figure I, where the residual thrust force is

broken into two components, T x and Ty, parallel and perpendicular, re-

spectively, to the final stage centerline. Each component is assumed to

be constant during the separation sequence.

When the two bodies are mated the composite cg will be as shown

in Figure I. In many cases the composite cg and moment of inertia of

the two bodies are not known but must be calculated from the individual

stage parameters. Considering static moments about a point on the sepa-

ration plane in Figure 1 to find i_,

-2-
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Ira2) tin1_X : m l'Tm _2 - m 1 + m 2 1
(1)

where symbols are shown in Figure 1 and defined in Appendix A, List of

Symbol s.

Doing the same about a point on the final stage centerline to find c_,

(m_ 2 ) Iml )((I 1-
= _2 + + _ 2) (2)

eY T m 2 m I + m 2

The composite moment of inertia is equal to the individual moments

of inertia of each body plus the transfer terms to the composite center of

g r avity.

IT= I1 + 12 + m I (a2 + b 2)+ m 2 (c 2 + d2) (3)

where a, b, c, d are related to the offsets and misalignments shown in

Figures 1 and 2 by the relationships

a : c 1 + el_ 2 - cV£

d=_ 2 -I X

Looking at the response to the residual thrust, the equations of

motion of the combined bodies become

oB
m

X-
T

x

m 1 + m 2

o_ T

y= Y
m I + m 2

•x +"6 -
o IT

where X' Y, and @ are measured from inertial coordinates.
O
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At the time of separation the expression for the complete accelera-

tion of the individual body cg will contain four terms (due to linear, tan-

gential, centripetal and coriolis acceleration terms).. This is discussed

in Appendix B. However, since the radius to these points is fixed at that

time and the angular rotation rate is usually small, only the linear and

tangential are significant. Therefore, as shown in Appendix B, the initial

linear and angular accelerations of the two bodies shown in Figure 1 can

be written as:

Body I (Spacecraft) Body Z (Final Stage)

• . °-- ,• Q.__"

x I --X- a@ (5a) x Z = X + c_ (6a)o o
o o

"-"+ -u (Sb) "-" o"";i --Y °_o _z --Y" d o (6b)
o o

_Jl -- _' (_c) "_z --b" 16c)0 0
o o

where these coordinates are also measured from an inertial reference.

Substituting terms from Equations (4), the initial linear and rota-

tional accelerations of each body due to residual thrust become

-. x _J (7_.)
Xlo = ml + m2 l+m2 ¢I + c l-Z - ¢2 o

"" - y + + (Tb)
Ylo 1 1 + m2m + m Z 1 2 o

•. _ x 0 (8a)
x2 _1 + _I-2m +m2 + - ¢2 oo 1 m Tm 2

"" = -- Y " (_ + _ _ (8b)
Y2 m + m 2 T m z I Z oo 1
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and

0 o

x 1 1 Z I-2

(m, +mzlIT

4. BASIC EQUATIONS OF MOTION DURING SEPARATION

4. 1 Spacecraft

A free-body diagram of the spacecraft, Body I, during separation

is shown in Figure 3a. Both external and D'A/embert forces are included.

As can be seen, the only external forces acting on the body are those from
.th

the separation springs. Only the i spring is shown but the program has

a capability of handling forces from up to four springs.

Since the coordinate system of each body is defined from the "equi-

librium" position, which is accelerating, a corrective term must be in-

cluded in the equations of motion. (i.e., F = ma only in inertial coordi-

nates and the coordinate system of each body is accelerating. ) Therefore,

the three equations of motion for the spacecraft, Body I, become

C_ "_io ) ' _ = 0 (lOa)m i 1 + - Fx i

where x I, Yl and 81 form the accelerating spacecraft coordinate system

with its origin at the equilibrium position, all summations are from i = 1

to i = 4 and Fxi and Fy i are the two individual spring force components.

Also, since the body coordinate system is rotating, _Io and _i o, which

are derived from an inertial reference, actually have Components along

both the x I and Yl axes which depend on the angle of rotation 81" However,

-7-
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during the typical separation 81 is always much less than 1 deg. There-
fore, these corrective terms are very small and have been neglected.

4.2. Final Rocket Stage

The free,body diagram of the final rocket stage, Body 2, is shown

in Figure 3b. Once again both external and D'Alembert forces are in-

cluded. Here the external forces acting on the body are both the separa=

tion spring forces and the residual thrust forces.

With the same assumptions on corrective terms as for the space-

craft, the equations of motion for Body Z are:

m2.(_2. + _Z )_'_Fx -T. x = 0 (lla)
o i

'° ) ZF T 0 (11b)mz Y2. + YZ + - =
o Yi Y

o 1

where Fxi and Fy i are the same as previously defined but in the direc-

tions shown in Figure 3b.

5. SPRING FORCES

5. 1 Axial Spring Force

It has been found by experience at STL that the forces and moments

produced by a helical spring with ends parallel and coaxial as it is com-

pressed along the spring axis are accurately defined by a force vector

through the center of the spring and inclined slightly to the spring axis

plus a moment about the spring axis. This is discussed in Reference i.

For both the OGO and 82.3 programs techniques were developed for

matching and pairing springs to compensate for both the lateral component

of the force and the moment. Therefore, the separation program assumes

that the spring force resulting from an axial compression of each spring

lies along the spring axis. While this is not precisely true for each spring

the matching process and typical symmetric location of springs in the

-9-



separation plane will mean that the resulting torques and forces on the two

bodies due to these two non-ideal phenomena will cancel out. Therefore,

using only the axial force component in the model is sufficient.

Most helical springs used for separation have a nearly linear axial

spring rate. This means that the axial spring force is directly propor-

tional and opposite in direction to the axial displacement. The proportion-

ality constant, the axial spring rate, can be calculated for a given helical

compression spring design (see Reference Z) or easily measured once the

springs have been wound. It has also been found that the axial spring rate

is virtually independent of the lateral deflection of the spring, especially

for the small lateral deflections that occur during the brief separation

time. Therefore, the amplitude of the individual axial spring forces, Fxi,

can be represented as

F = -k _f_x.
X. X.

1 1 1

(IZ)

where kxi is the individual axial spring rate and _x i is the deflection of

the ith spring. The direction of Fxi is shown in Figures 3a and 3b and the

deflection of a given spring is defined as

( )mlXl °

PX, :1 (xl - X_)"I" (@lai - @_bi) - < _ {13)

where the final term corrects for the difference between the origin of the

axis system and the free spring length.

The axial spring rate, kxi, is only defined for compression of the

spring (the spring supports no tension loads since it is not attached to the

spacecraft). Therefore, Fxi = 0 when _xi is positive.

It should be noted that certain approximations have been 1_aade con-

cerning the forces due to the separation springs in this model:

The two body-coordinate systems are accelerating

and rotating so there should be corrective terms in

the expression for each spring deflection. Since

the deflection is proportional to the relative displace-

ment between the two bodies, however, these correc-

tive terms are not only small but tend to cancel each

other.

a)

-i0-



bl The x I and x 2 axes, and hence the Fxi forces on

either end of the spring, are not parallel in this model.

The errors involved, however, are higher order Since

the relative angle {81 - 82) is small.

There is actually a small moment produced by a spring

when its opposite ends are not parallel {81 _- 82) which

has been neglected.

There is no complete rigorous analysis of the forces and moments

produced by a helical compression spring for various combinations of

compression, lateral deflection, twisting, etc., to include higher order

effects. Therefore, detailed definition of the separation spring forces

does not seem warranted for this type of analysis.

5.2 Lateral Spring Force

The lateral spring rate (ib/in} of a helical spring is a strong function

of the axial deflection, but for a given axial deflection the lateral spring

rate is constant. Therefore,

F = -k (14)
Yi Yi

mlY

where ky i is a function of px i, and the subsubscript e denotes the vaH1e

at equilibrium. The direction of Fy i is shown in Figures 3a and 3b.

The precise relationship between the lateral spring rate and the

axial deflection for a helical compression spring has not been proven.

Theoretical. approaches (Reference 3 and 4) indicate that the lateral rate

decreases as the axial deflection increases. Experience at STL, however,

indicates that for the type of springs used in the OGO and 8Z3 separation

systems the lateral spring rate actually increases as the axialdeflection

increases. This is also discussed in Reference i. In either case, the

relationship between ky i and px i is not linear. For that reason, the sep-

aration program provides for a table of values of ky i versus _x i for each

sp ring.

The axial force of the spring will be zero at the instant it separates,

since it will not support tension. However, there may be a lateral spring

-II-



deflection, and hence a lateral load, right up to separation. In fact, the

spring will give a lateral force even after the free height of the spring is

reached, until the lip of the separation spring cup on the satellite is cleared.

Therefore, ky i is defined from the given table until _xi = 6w, the width

of this lip, and then ky i = 0 for greater values of _xi.

6. SOLUTION OF EQUATIONS OF MOTION

At any given time during separation each spring will be in one of
three conditions:

a) Transmitting both lateral and longitudinal spring
forces (_xi _ O)

b) Transmitting a lateral spring force only (0__ _xi ___6w)

c) Completely detached from spacecraft (_xi > 6w)

Since each spring can move from one condition to another at different

times the only two states where the complete equations of motion can be

written in fairly simplified terms are:

a) Before any spring reaches its free length

b) After all springs have detached.

During the intermediate condition there will be some springs in each of the

three combinations (a, b, or c).

In the first state the equations of motion become by substitution of

Equations (12), (13), (14), and (15) into Equations (i0) and (Ii)

STATE I (All Springs Compressed)

Body 1 (Spacecraft)

"' -- - e + [ i ez (16a)
Xl + Xl _ii x2 _- m I j i m

Vl _Y yl yz+ °I - ml -eZ+_I Y I
+ ml -- m-_l Lm' J L J o _ (16b)

-12-
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ml _I rot"_I ky TxCT T

In the intermediate state, State II, all the lateral spring force terms,

those containing ky, will be the same as for State I, but only the axial

spring force terms from springs stillin contact will be present. There_

fore, the equations are the same for State iI as for State I except that the

summations are only over the values of i where _x i < 0.

For the final state, State III, all the spring force terms, from Equa-

tions (i0) and (ii) drop out, and the equations of motion become

STATE III (All SprinTs Detached, Complete Separation)

Body I (Spacecraft)

_1 : -_'1 (18a)
o

T:l = ;1 (lSb)
0

_1 = "@i (18c)
0

Body Z (Final Rocket Stage)

T

"_2- x "_2
mz o

T

Y2 m Z _2 °

.. T cT Ty(_ -_ ) ..
x a 2 " @2

@Z = IZ IZ o

(19a)

(19b)

(19c)

When the separation is complete the spacecraft has no external

forces acting on it and hence no acceleration withrespect to inertial space.

Therefore, the acceleration components in the accelerating coordinate

system are equal and opposite to the corresponding inertial accelerations

of the reference system.

-14-



The final rocket stage is still accelerating due to the residual thrust.

However, the acceleration is different from that of the reference system

since the mass acted upon by the force is now only m"2 instead of m I + m 2
and the cg is now the body's cg, rather than the combined center of gravity.

The right-hand terms in Equations (19) correct for these changes.

7, COMPUTER SOLUTION

The six basic equations of motion for the two bodies in State I,

Equations (16) and Equations (17), have been programmed for solution on

the IBM 7090 digital computer. The equations for States II and III are

actually special cases of those for State I so these equations cover the

complete separation regime. Every axial spring deflection is examined

during each integration step to determine which terms of the summation

should be included and which should be dropped. Therefore, the equations

used for calculation transfer automatically from those of State I, through

State II, to those of State III as the spring terms vanish.

Provision is made in the program for any arbitrary initial conditions

of the various parameters. Care must be taken, however, to stay with

the ranges where the solutions are accurate, as discussed previously.

The initial values of certain parameters are set by the assumptions

used or by geometric constraints. The initial accelerations, velocities'

and displacements are constrained as follows:

7. 1 Initial Accelerations

The initial accelerations in inertial coordinates

" "0 , and1' '_1' Y2 ' 1
O O O O O

have been derived previously EEquations (5) and (6)_, The initial accelera-

tions in the body-coordinates should be zero since the bodies are clamped

together initially.

7.2 Initial Velocities

The initial velocities of each body in inertial coordinates are deter-

mined by the geometric relationships

-15-



_1 --X - a_3°
o

a

_2 =_ + C°o
o

e

21 : ¥ + b°o
o

- 6=Y-d
2 o
o

61 = e2 -- 6o
0 0

where X, Y and
o

be zero initially.

are arbitrary. The body-coordinate velocities should

7.3 Initial Displacements

The initial displacements in body coordinates

X l ' x2 ' Y l ' and Y2
0 0 0 0

are related by the compressed length of the spring and initial offsets

x I

Yl -
o

.o

mlxI.

_ _ o 8+ x2
k o

x

ml_ 1
o

+ _ +Y2
ko o

Y

where the average initial lateral offset, Cko, is defined by

_k = _I- _2÷ _l-Z " I/4 [_-ai-_-bi]
o

and the summations are from i = 1 to 4.

7.4 Initial Rotations

The initial rotations, @io and @go,

clamped together before separation.

are .equal since the bodies are

-16-
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8o INPUT AND OUTPUT OF COMPUTER

8.1 Input

For a particular problem the following parameters must be

provided:

_2

_i-2

T

_i Ii T a b I k k 1x 1 Xl Yl

f2 Iz T a 2 b 2 kx2 kY Y2

_a ml 5 a 3 b 3 kx3 ky3 1

J_k mz 6 a 4 b 4 k k
w x4 Y4

Either as a constant

or as a table versus

_x.
1

The following parameters can either be provided or will be calcu-

lated by the program:

_k IT
o

Initial Conditions (See Section 7)

Copies of the actual 7090 Symbolic Code Form, showing the method of

input, are shown in Figures 4a and 4b.

The program {CDRC Problem Noo 368Z), as written, assumes that

5 = 0.5 inch. If other values of spring cup width are desired it must be
w

changed in the program.

The form used for the tables of lateral spring rates is:

( ) (B ,(),etc.,Beta i' (ky) , eta)2 ky 2
1

where subscripts pertain to increasing values of Beta-X.o i

All numbers in the input must have decimal points, including the

numbers which indicate how many pairs of values are given in the Beta

versus k tables.
Y

Since _5 has been programmed in inches, all lengths should be
w

input in inches. Other dimensions are arbitrary as long as they are

consistent.

-17-
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Table - Beta-XBvs. kY 3

Additional card(s) for table

Table - Beta-X_vs. k_$

Additional card(s) for table

No. pairs of B_ta-X I vs. ky_

No. pairs of Beta-X 2 vs. ky 2

No. pairs of Beta-X 3 vs+ ky 3

No. pairs of Beta-Xt_ vs. k:_4

_j
_q

-4
0
"43
0

[n

0

F,a.

--+ 0
N o

eo N
0 0

0
N

t_

i-,1
g_

0

N

0

N



8. Z Output

The printout of the program will provide,

the following:

for each integration step,

Time x I xz Yl YZ 81 @Z X IV 8o

° _,

' _z ' 6 62 _ Y 6Xl )I YZ I o

. o _. .. '.l' tl' ._Xl _z Yl Vz °i °z x Y o

All angles are given both in terms of radians and arc degrees.

8.3 Example Problem

The following example problem illustrates the type of solution avail-

able with this separation program. For this example the input values are:

5 = 2.08 inch a I = 8.642 inch

c 1 = 0.092 inch a2 = 0.097 inch

¢2 = 0.316 inch a3 =-8.448 inch

el. 2 = 0 a4 = 0.097 inch

eT = 0 b I = 8.866 inch

T X = 0 b Z = 0.321 inch

Ty = 0 b3 =-8. ZZ4 inch

2
I1 = 2330 Ib-sec -in b4 = 0.3ZI inch

2 = k = k = k = 55 Ib/in
12 = 24,900 Ib-sec -in kxl x2 x3 x4

l = 47. 625 inch m I = 2. 695 ib-secZ/in

_2 = 133.8 inch m 2 = 3.918 ib-secZ/in

_k = i. 14 inch
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For all springs the following table of k
Yi

_x. (inch) k
x Yi

-2.08

-I 83

-I 58

-I 08

-0 83

-0 58

-0 33

-0

+0.5

The values of O 1, @I' 02' bE' and (_I-

as the bodies separate in Figure 5.

versus

'(lb/irO

47.2

37.4

30.0

22.4

20.2

20.0

21.0

Z6.0

Z6 0

_x. is used:
1

x2) are shown versus time
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Figure 5. Example Problem



APPENDIX A

LIST OF SYMBOLS

a.

1

b*

I

I1

I2

IT

k
X.

1

k
Yi

k
x

k
Y

1

I
Z

a

k

m

X

m 1

m 2

T
x

T
Y

Lateral displacement of ith spring attach point from space-

craft center of gravity (see Figure 2) (inch)

Lateral displacement of ith spring attach point from final

stage cg {see Figur e 2) (inch)

Moment of inertia of spacecraft about its cg {ib-secZ-in)

2
Moment of inertia of final stage about its cg (ib-sec -in)

Total moment of inertia of mated bodies about the combined

cg (ib-secZ-in)

Longitudinal spring rate of ith separation spring (Ib/in)

Lateral spring rate of ith separation spring (ib/in)

Total longitudinal spring rate of separation springs

(kxl + kx2 + kx3 + kx4 ) (lb/in)

Total lateral spring rate of separation springs

( + k +k +k ) (ib/in)ky I YZ Y3 Y4

Location of spacecraft cg with respect to separation plane

(see Figure i) (inch)

Location of final stage cg with respect to separation plane

{see Figure I) (inch)

Length of final stage (see Figure I) (inch)

Compressed height of separation spring (see Figure i) (inch)

Location of combined cg with respect to separation plane

(see Figure I) (inch)

a/Mass of spacecraft (ib-sec in)

z/Mass of final stage {ib-sec in)

Residual thrust force along X2

Residual thrust force along YZ

axis (see Figure 1) (pound)

axis (see Figure 1) (pound)
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xl, Y1

x2' Y2

X, Y

Px.
1

_Yi

5

5
w

c 2

c1_ 2

c T

@I' @2

@
O

Displacement components of spacecraft from equilibirum

position (see Figure 2) (inch) (Accelerating and rotating

reference)

Displacement components of final stage from equilibrium

position {see Figure Z) (inch) (Accelerating and rotating

referenc e)

Displacement components of mated bodies (see Figure I)

(inch) (Inertial reference)

Axial deflection of i th spring (inch} Esee Equation (14)_

Lateral deflection of i th spring (inch) [see Equation (16)]

Stroke length of all separation springs (see Figure 2) (inch)

Width of lip on separation spring cups (inch}

Lateral displacement of spacecraft cg with respect to its
centerline (see Figure 1) (inch}

Lateral displacement of final stage cg with respect to its
centerline (see Figure 1) (inch}

Lateral misalignment of two centerlines (see Figure 1) (inch}

Lateral displacement of T from final stage cg (see Figure I)
(inch) x

Lateral displacement of combined cg from final stage center-

line (see Figure l) (inch)

.Angular rotation of spacec.._rraftand final stage, respectively,

about its own cg (tad or deg) (Accelerating and rotating
references)

Angu_lar rotation of mated bodies about the combined cg (tad
or deg) (Inertial reference)

N. mo Superscript dots denote time derivatives. Subsubscripts "d'
denote initial, mated-body conditions. Subsubscripts "e"
denote conditions when bodies are in the equilibrium position.
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APPENDIX B

TOTAL ACCELERATION OF A POINT NOT AT THE

CENTER OF GRAVITY

The problem of finding the initial acceleration components of each

separating body is one of coordinate tranformations.

Consider first the coordinates of the mated bodies, X, Y, and 8
o

The reference of this system is a point in inertial space. The accelera-

tion components of the combined cg with respect to this point, therefore,
0J

at any time are precisely equal to X along X, Y along Y and _ about
o

the Z-axis, which is normal to the X-Y plane.

The acceleration of any point a distance r from the combined cg

with respect to the cg can be written in terms of the radial and tangential

acceleration components, a r and a T , where a r is along r and a T is

perpendicular to this. From basic dynamic theory,

ar o

a T = r@o + Zr@o (B. Ib)

However, just prior to the instant of release the distance r is con-

stant and its first two derivatives are zero. Therefore

a = -r (B.Za)
r o

aT: r@'o (B. 2b)

The total inertial acceleration of each cg, in the mated-body axis

system, is the sum of these two components, plus the acceleration of the

combined center of gravity

r(6o)2- cos _ - r@ sin _ (B. 3a)
o

.v (6o)sin _ + r@ cos _ (B. 3b)
o

a e --b" (B.3c)
O

o

w

where _ is the angle between r and the X axis.
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For the two individual bodies, using the distances to the two centers

of gravity shown in Figure 1

Spac ec raft

) _io "" (t_) ""= = X - b Z a@ (B.4a)a_ 1 o

() = _1 : Y - a + b0" (B.4b}
aY 1 o o o

%0) :'°1 : 6 (B.4c)o

1 o

Final StaTe

=x+d( o)2+C0o ,B.
2 o

" ()
oo P_

o 2 o

For most spacecraft separation problems the angular velocity is

small since the final rocket stage usually has an active control system.

Therefore, the (0o) 2 terms can be neglected. This also has the advan-

tage of leaving only acceleration terms in the calculation of the initial

conditions, meaning that they can be found explicitly in terms of the forces

and moments acting on the combined bodies. As simplified,

;" "--" a0 °" "--'
x I = X-- o (B. 6a) x 2 = X+ c o (B. 7a)

O O

e0

I = Y + b0 (B. 6b) YZ = Y - (B. 7b)o o
o o

'_1 : _o (B. 6c) "°z : _Jo (B. "Zc)
O o

These are also Equations (5) and (6) of the main text.
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